Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations
نویسندگان
چکیده
A simple model that links MOSFET performance, in the form of intrinsic switch delay, to effective carrier velocity in the channel is developed and fitted to historical data. It is shown that nearly continuous carrier velocity increase, most recently via the introduction of process-induced strain, has been responsible for the device performance increase commensurately with dimensional scaling. The paper further examines channel material innovations that will be required in order to maintain continued commensurate scaling beyond what can be achieved with process-induced strain, and discusses some of the technological tradeoffs that will have to be faced for their introduction.
منابع مشابه
Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملA Study on Multi Material Gate All Around SOI MOSFET
As the continuous down scaling of MOSFET device is required to increase the speed and packaging density of it, but it reduces the device characteristics in terms of short channel effect and reverse leakage current. At present, the single gate MOSFET reaching its scaling limit. These limitations associated with scaling give birth to number of innovative techniques which includes the use of diffe...
متن کاملImprovement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...
متن کاملTransport enhancement techniques for nanoscale MOSFETs
Over the past two decades, intrinsic MOSFET delay has been scaled commensurate with the scaling of the dimensions. To extend this historical trend in the future, careful analysis of what determines the transistor performance is required. In this work, a new delay metric is first introduced that better captures the interplay of the main technology parameters, and employed to study the historical...
متن کاملAn Accurate 2D Analytical Model for Transconductance to Drain Current ratio (gm/Id) for a Dual Halo Dual Dielectric Triple Material Cylindrical Gate All Around MOSFETs
A dual-halo dual-dielectric triple-material cylindrical-gate-all-around/surrounding gate (DH-DD-TM-CGAA/SG) MOSFET has been proposed and an analytical model for the transconductance-to-drain current ratio (TDCR) has been developed. It is verified that incorporation of dual-halo with dual-dielectric and triple-material results in enhancing the device performance in terms of improved TDCR. The ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IBM Journal of Research and Development
دوره 50 شماره
صفحات -
تاریخ انتشار 2006